Similarity-Based Malware Classification Using Graph Neural Networks

نویسندگان

چکیده

This work proposes a novel malware identification model that is based on graph neural network (GNN). The function call relationship and assembly content obtained by analyzing the are used to generate represents functional structure of sample. In addition establishing multi-classification for predicting family, this implements similarity Siamese networks, measuring distance between two samples in feature space determine whether they belong same family. gradually adjusted during training improve performance. A Malware Bazaar dataset analysis reveals proposed classification has an accuracy area under curve (AUC) 0.934 0.997, respectively. AUC 0.92 0.92, Further, identifies unseen family with approximately 70% accuracy. Hence, exhibits better performance scalability than pure previous studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional Neural Networks for Malware Classification

According to AV vendors malicious software has been growing exponentially last years. One of the main reasons for these high volumes is that in order to evade detection, malware authors started using polymorphic and metamorphic techniques. As a result, traditional signature-based approaches to detect malware are being insufficient against new malware and the categorization of malware samples ha...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Classification based on 3-similarity

Similarity concept, finding the resemblance or classifying some groups of objects and study their common properties has been the interest of many researchers. Basically, in the studies the similarity between two objects or phenomena, 2-similarity in our words, has been discussed. In this paper, we consider the case when the resemblance or similarity among three objects or phenomena of a set, 3-...

متن کامل

Using Weighted Bipartite Graph for Android Malware Classification

The complexity and the number of mobile malware are increasing continually as the usage of smartphones continue to rise. The popularity of Android has increased the number of malware that target Android-based smartphones. Developing efficient and effective approaches for Android malware classification is emerging as a new challenge. This paper introduces an effective Android malware classifier ...

متن کامل

Adversarial Perturbations Against Deep Neural Networks for Malware Classification

Deep neural networks, like many other machine learning models, have recently been shown to lack robustness against adversarially crafted inputs. These inputs are derived from regular inputs by minor yet carefully selected perturbations that deceive machine learning models into desired misclassifications. Existing work in this emerging field was largely specific to the domain of image classifica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app122110837